
O(N) IMPLEMENTATION OF THE FAST MARCHING ALGORITHM

By

Liron Yatziv

Alberto Bartesaghi

and

Guillermo Sapiro

IMA Preprint Series # 2021

(February 2005)

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS

UNIVERSITY OF MINNESOTA

514 Vincent Hall
206 Church Street S.E.

Minneapolis, Minnesota 55455–0436
Phone: 612/624-6066 Fax: 612/626-7370

URL: http://www.ima.umn.edu

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
FEB 2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
O(N) Implementation of the Fast Marching Algorithm

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Minnesota,Institute for Mathematics and Its
Applications,Minneapolis,MN,55455-0436

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

Same as
Report (SAR)

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

O(N) Implementation of the Fast Marching

Algorithm

Liron Yatziv, Alberto Bartesaghi, and Guillermo Sapiro

Department of Electrical and Computer Engineering, University of Minnesota

Minneapolis, MN 55455, USA, {liron,abarte,guille}@ece.umn.edu

Abstract

In this note we present an implementation of the fast marching algorithm for solving
Eikonal equations that reduces the original run-time from O(N log N) to linear. This
lower run-time cost is obtained while keeping an error bound of the same order of
magnitude as the original algorithm. This improvement is achieved introducing the
straight forward untidy priority queue, obtained via a quantization of the priorities
in the marching computation. We present the underlying framework, estimations
on the error, and examples showing the usefulness of the proposed approach.

Key words: Fast marching, Hamilton Jacobi and Eikonal equations, distance func-
tions, untidy priority queue.

1 Introduction

The fast marching method [13] has been introduced to solve the static Hamilton-
Jacobi (Eikonal) equation |∇T |F = 1, in a computationally efficient way. Here
F > 0 is the front moving speed and T is the travel time. F and T may also
be interpreted as travel cost and intrinsic distance respectively. Regarding the
computationally efficient implementation of this equation, Tsitsiklis [16] first
described an optimal-control approach, while independently Sethian [12] and
Helmsen [5] both developed techniques based on upwind numerical schemes.
The complexity of their approach is O(N log N), where N is the total number
of grid points. 1 The algorithm is an extension to the classical Dijkstra tech-
nique, and is based on finding (at each iteration) the point with the minimal
T value in the narrow band set of points that are being updated, and setting
it to be alive (points that already got their definitive T value). Neighbors of
this point are then updated and the process is repeated until all points in the

1 In practice, the number of visited points during the computation.

Preprint submitted 4 February 2005

domain have been processed. All involved numerical computations use upwind
schemes. The point with the minimal T value is usually found using a heap
priority queue based on a tree. Insertion time to such a heap is O(log n) where
n is the number of points in the narrow band. Due to the positiveness of F ,
every point is visited at most a constant number of times, and from this the
time complexity of the algorithm is O(N log N). See [13] for additional details.

Due to the broad applications of weighted distance functions obtained by
solving the above mentioned Eikonal equation, e.g., [6,13], its efficient im-
plementation and numerous extensions have been studied. In particular, fast
sweeping algorithms have been proposed, e.g., [2,15,17] (early ideas in this
direction were proposed by Danielsson). This technique is based on using a
pre-defined sweep strategy, replacing the use of the heap priority queue to
find the next point to process, and thereby reducing the overall complexity to
O(N). 2

Here we propose a new implementation of the fast marching algorithm which
reduces the computational complexity to O(N) (being in practice N as in the
original fast marching, the number of visited points). This is based on the con-
cept that when solving the Eikonal equation for the current grid point, we can
quantize (round) the priority values, thereby allowing to use a table instead
of a tree, reducing the updating complexity from O(log N) to O(1). This is
done with the help of a data structure denoted as untidy priority queue. We
show that the possible error introduced by this simplification can be kept of
the same order of magnitude as the numerical error introduced by the spatial
discretization inherent to numerical implementations, while in practice, the
errors introduced by this approximation are virtually insignificant. In layman
words, the idea here proposed is that in the same way that numerical imple-
mentations introduce errors due to space discretization, we can also allow for
errors in the value computed from the Eikonal equation when used to set the
priority for the current grid point. When this is properly done, computational
complexity is improved at no theoretical or practical cost. The rest of this
note provides details on this and examples.

2 Algorithm Description

Our method is based on the special properties that grid points hold in the
maintained priority queue. When the T value of all points in the queue are

2 Here N is the number of grid points in a bounding box of the region of interest.
Although theoretically this is the same “N” as in the original fast marching imple-
mentation, it can be much larger in practice, in particular for largely anisotropic
speeds F (computations are done only at visited points in fast marching).

2

T2=T0+2∆

T1=T0+∆

T3=T0+3∆

T4=T0+4∆

T5=T0+5∆

T0
PminPr

1 2 3 4

5

6 7 8 9

10 11 12

13

^

^

^

^

^

^

^

^

^

^

^

T2=T0+2∆

T1=T0+∆

T3=T0+3∆

T4=T0+4∆

T5=T0+5∆

T0
PminPr

1 2 3 4

5

6 7 8 9

10 11 12

13

^

^

^

^

^

^

^

^

^

^

^

T2=T0+2∆

T1=T0+∆

T3=T0+3∆

T4=T0+4∆

T5=T0+5∆

T0
PminPr

5

6 7 8 9

10 11 12

13

^

^

^

^

^

^

^

^

^

^

^

T2=T0+2∆

T1=T0+∆

T3=T0+3∆

T4=T0+4∆

T5=T0+5∆

T0
PminPr

5

6 7 8 9

10 11 12

13

^

^

^

^

^

^

^

^

^

^

^

(a) (b)

Fig. 1. Operational queue for the narrow band, see text for details.

always larger or equal than the T value of the latest point extracted from the
queue, the queue is denominated as a monotone priority queue. This important
subclass of priority queues is used in applications such as event scheduling and
discrete event simulation. In the fast marching algorithm the queue maintained
for the narrow band (NB) has a monotone behavior. If we assume that F is
bounded, we can derive that the T values of the points in the queue are also
bounded since there is a maximal possible increment Imax over the point with
the minimal T value in queue. 3 When a priority queue involves only points
with T values in a fixed size range, it is possible to use data structures based
on a circular array (see Figure 1). Each entry of the circular array contains a
list of points with “similar” T value. The calender queue [3] and some of it’s
improvements [1,9,11] are all such queues where the probabilistic complexity
of the insert and remove operations are O(1). 4

Let Pmin be the point with time Tmin which is the minimal time in the queue
and Pr with time Tr be the next point to be removed from the queue. For the
calendar queue Pr = Pmin always holds, i.e., we are always guaranteed to get
the point with the lowest priority. However, since the fast marching algorithm
already has an error dependent on the grid density h, O(h), it is not necessary
to strictly keep Pr = Pmin to achieve the same general order of numerical error.
We propose to use an untidy priority queue where Pr ≈ Pmin. The queue is
based on the circular array, which is a simplification of the calender queue.
Each entry in the circular array of size d represents a discrete (quantized) level
of T , uniformly distributed. Let T̂ be the quantized value of T and ∆ be the
difference between any two consecutive discrete levels. Let T̂0, T̂1, . . . , T̂d−1 be
the discrete levels of the array entries such that T̂0 < T̂1 < . . . < T̂d−1. The
entry T̂i keeps a FIFO list of grid points with T values in the range [T̂i, T̂i+1]
that quantize to T̂i.

Figure 1(a) gives an example of the proposed untidy priority queue. In this

3 The value of Imax depends on the neighborhood scheme used, e.g. for 4-neighbors,
Imax = max (F).
4 Yet, worst case complexity is O(log n) which happens if too many elements have
nearly equal priorities.

3

example d = 6 so that 6∆ = Imax. Priority values T are then assumed to be in
the range [T̂0, T̂0 + Imax]. The queue keeps track of the memory location L0 of
entry T0 in the array (the entry corresponding to the current value of T). In
this example, T0 is the 3rd entry from the top so L0 ← 3. When a new point
Pa with time Ta is added to the queue, according to it’s quantized time value
T̂a, it is placed in the end of the list of entry Tj. Where j ← (T̂a − T̂0)/∆.
Finding entry Tj in memory can be done using a simple modulo operation:
Lj = (j + L0)/∆ mod d. The next point to be removed from the queue, Pr,

will always be the first point in the T̂0 entry. The figure displays numbers
which correspond to the order in which the points would be removed if no
new points are added to the queue during the process. Note that due to the
quantization, Pr is not necessarily Pmin, but we can guarantee that T̂min = T̂r

so 0 ≤ T̂r − T̂min < ∆. When the list at position T̂0 is emptied, the next non-
empty list is used (list at position T̂1 in this example). The entry T̂0 is now
used to store T values quantized to T̂0 + 6∆ (circular queue). For consistency,
all labels are shifted forward one position so the new Pmin is now at position
T0 as shown in Figure 1(b).

Note that the quantization is used only to place the grid point in the queue,
while the actual T value is used to solve the Eikonal equation when the grid
point is selected. Therefore, errors can only occur due to wrong selection order
(misorder), see below for more details.

The average complexity of the remove operation is O(1) as long as O(d) ≤
O(n) (since the operation may involve searching for a non-empty queue). Se-
lecting a constant size d of order O(1) or by using automatic resizing techniques
as presented in [3], it is possible to guarantee a worst case average complex-
ity of O(1). The insert operation has no searching involved and therefore it’s
run-time complexity is O(1).

An extreme case occurs when Imax � 0 and increments with same magnitude
of Imax are rare. This causes a “waste” in accuracy, since many discrete levels
in the circular array would contain empty lists. Prior knowledge of such in-
crement distributions permits to handle the rare large increments separately
as suggested in [3], thereby avoiding such a situation.

To conclude, let us point out that Tsitsiklis also described O(N) variations
for solving the Eikonal equation (although the constant can be much larger
than in his O(N log N) approach). His approach is based on buckets and a
more elaborated discretization of the equation, which is “more cumbersome
and is unlikely to be used when the dimension is higher than three” [16].
His bucket data structure is a linear array of length O(max T/∆T). In con-
trast, our approach does not require a new discretization (which in the case
of [16] includes an optimization step which is more expensive to solve), uses a
cyclic array thereby no needing to estimate the maximal distance and being

4

more memory efficient, has very small constant in the O(N) complexity, and
quantizes the values only for queue placing and not for actual computation.
Thereby, the approach here proposed is simpler, faster, valid for any dimension
(as well as for the extensions reported in the literature for computing geodesics
on manifolds [7,10]), and memory efficient. The authors of [8] also mentioned
that numerical precision can be exploited to eliminate the tree search, but no
algorithm was proposed.

2.1 Error Bounds

Assuming a given state of the algorithm, we would like to bound the additional
error in the computation of T of an Alive point when it is selected out of order
using the untidy priority queue.

Let Tro be the minimal possible time value the point Pr would get if Pmin

was selected (the selection an accurate queue/tree would give). The additional
error due to a single misordering is ε = Tr−Tro. Since the point Pr was selected,
the untidy priority queue restricts Tr and Tmin to share the same discrete level.
Hence, Tr − Tmin ≤ ∆. Since F > 0, it is possible to show from the properties
of the algorithm that Tmin ≤ Tro. When combining this, we obtain that the
possible error due to a single misordering is ε = Tr − Tro ≤ Tr − Tmin ≤ ∆.
Note that ε > 0 since the algorithm may only decrease the value of points in
NB, so removing a point early may only cause Tr not to reach Tro. Therefore
the introduced error can not be negative.

Since ε ≤ ∆ = Imax/d, by selecting d = O(1/h) we can achieve ε = O(h).
This is the same order of magnitude of error as in the original fast marching
algorithm, only that computational complexity is reduced to O(N).

3 Numerical Experiments

Numerical experiments show that errors caused due to the misordering are
very rare, small, and in practice far from the upper bounds computed above.
Figure 2 presents error statistics versus the number of discrete levels. Numeri-
cal experiments show that few discrete levels are enough to achieve a negligible
error.

Figure 3 gives an example of a fast marching application. The task is to
segment the lake just by giving 4 points on the shore of the lake, following [4].
The segmentation based on the distance function generated using the untidy
priority queue is identical to the segmentation archived using an accurate

5

10
0

10
1

10
2

10
3

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

number of discrete levels (d)

Additional error statistics for random F

max error
average error
sum square difference (SSD)
num. of points no error

10
0

10
1

10
2

10
3

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

number of discrete levels (d)

Additional error statistics when F is lake photo

max error
average error
sum square difference (SSD)
num. of points no error

(a) (b)

Fig. 2. Error statistics compared to an accurate queue. (a) Statistics when creating
a time/distance function on a 2000x2000 grid with random 0 < F ≤ 1. (b) Same
statistics when F is a decreasing function of the image gradient, Figure 3.

(a) (b)

Fig. 3. The segmentation example shows that the quantization error does not inter-
fere with fundamental fast marching applications. (Image size 1163 x 1463.)

queue. Yet, the run-time when using the untidy priority queue is much shorter
(see below). Additional examples are available online at
http://mountains.ece.umn.edu/∼liron/fastmarching/.

Figure 4 shows the O(N) run-time complexity. The average number of queue
operations done per point in the gird is constant as the grid size N goes to
infinity. Using our implementation, the time required to compute distances
(from a single seed) in a 2000x2000 grid with random 0 < F ≤ 1 using 1000
discrete bins is 1.251 seconds. When F is an edge map obtained from the
1163x1463 image displayed in Figure 3(a), the time required is 0.591 seconds.
The computer used for the measurements is a Pentium 4 laptop with 2Ghz
processor speed.

Acknowledgments- We thank Gustavo Brown for ideas on queue based im-

6

http://mountains.ece.umn.edu/~liron/fastmarching/

10
4

10
5

10
6

10
7

10
8

0

2

4

6

8

10

12

14

16

18
Average number of queue operations vs. grid size

av
er

ag
e

nu
m

be
r

of
 q

ue
ue

 o
pe

ra
tio

ns

number of grid points

binary tree based heap
untidy prority queue (2048 discrete levels)
untidy prority queue (1024 discrete levels)
untidy prority queue (512 discrete levels)

Fig. 4. Run-time statistics. Only queue search operations are considered. For the
heap operations, these include both the heap access and the priority comparisons.
For the untidy priority queue, operations are array entry access. Statistics done on
a square grid with a random F function.

plementations and Ron Kimmel for reminding us of the O(N) algorithm in [16].
This work was partially supported by the Office of Naval Research, the Na-
tional Science Foundation, and the National Geospatial-Intelligence Agency.

References

[1] J. Ahn and S. Oh, “Dynamic calendar queue,” Proceedings of the Thirty-Second
Annual Simulation Symposium, pp. 20, 1999.

[2] M. Boue and P. Dupuis, “Markov chain approximation for deterministic control
problems with affine dynamics and quadratic cost in the control,” SIAM J.
Numer. Anal. 36, pp. 667-695, 1999.

[3] R. Brown,“Calandar queues: A fast O(1) priority queue implementation for the
simulation event set problem,” Comm. ACM 31, pp. 1220-1227, 1988.

[4] L. D. Cohen, and R. Kimmel, “Global minimum for active contours models:
A minimal path approach,” International Journal of Computer Vision 24, pp.
57-78, 1997.

[5] J. Helmsen, E. G. Puckett, P. Collela, and M. Dorr, “Two new methods for
simulating photolithography development in 3D,” Proc. SPIE Microlithography
IX, pp. 253, 1996.

[6] R. Kimmel, Numerical Geometry of Images: Theory, Algorithms, and
Applications, Springer-Verlag, New York, 2004.

[7] R. Kimmel and J. A. Sethian, “Computing geodesic paths on manifolds,”
Proceedings of National Academy of Sciences 95:15, pp. 8431-8435, July, 1998.

[8] R. Kimmel and J. Sethian, “Optimal algorithm for shape from shading and
path planning,” Journal of Mathematical Imaging and Vision 14:3, pp. 237-
244, 2001.

7

[9] K. Leong Tan and L. Thng, “Snoopy calendar queue,” Proceedings of the 32nd
Conference on Winter Simulation, pp. 487 - 495, 2000.

[10] F. Memoli and G. Sapiro, “Fast computation of weighted distance functions
and geodesics on implicit hyper-surfaces,” Journal of Computational Physics,
173:2, pp. 730-764, November 2001.

[11] R. Rönngren, J. Riboe, and R. Ayani, “Lazy queue: A new approach
to implementing the pending-event set,” Proceedings of the 24th Annual
Symposium on Simulation, pp. 194-204, 1991.

[12] J. A. Sethian, “A fast marching level-set method for monotonically advancing
fronts,” Proc. Nat. Acad. Sci. 93:4, pp. 1591-1595, 1996.

[13] J. A. Sethian, Level Set Methods: Evolving Interfaces in Geometry, Fluid
Mechanics, Computer Vision and Materials Sciences. Cambridge Univ. Press,
1996.

[14] M. Thorup, “On RAM priority queues,” Proceedings 7th ACM-SIAM
Symposium on Discrete Algorithms, pp. 59-67, 1996.

[15] Y.R. Tsai, L.T. Cheng, S. Osher, and H.K. Zhao, “Fast sweeping algorithms for
a class of Hamilton-Jacobi equations,” SIAM Journal on Numerical Analysis
41:2, pp. 673-694, 2002.

[16] J. N. Tsitsiklis, “Efficient algorithms for globally optimal trajectories,” IEEE
Transactions on Automatic Control 40 pp. 1528-1538, 1995.

[17] H. K. Zhao, “Fast sweeping method for Eikonal equations,” Mathematics of
Computaion 74, pp. 603-627, 2004.

8

